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Abstract
Fibromyalgia (FM) is a prevalent syndrome, characterisedby chronicwidespreadpain, fatigue, and impaired sleep, that is challenging to
diagnose and difficult to treat. The microbiomes of 77 women with FM and that of 79 control participants were compared using 16S
rRNA gene amplification and whole-genome sequencing. When comparing FM patients with unrelated controls using differential
abundance analysis, significant differenceswere revealed in several bacterial taxa. Variance in the composition of themicrobiomeswas
explained by FM-related variables more than by any other innate or environmental variable and correlated with clinical indices of FM. In
line with observed alteration in butyrate-metabolising species, targeted serum metabolite analysis verified differences in the serum
levels of butyrate and propionate in FMpatients. Usingmachine-learning algorithms, themicrobiomecomposition alone allowed for the
classification of patients and controls (receiver operating characteristic area under the curve 87.8%). To the best of our knowledge, this
is the first demonstration of gutmicrobiomealteration in nonvisceral pain. This observation paves theway for further studies, elucidating
the pathophysiology of FM, developing diagnostic aids and possibly allowing for new treatment modalities to be explored.
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1. Introduction

Fibromyalgia (FM) is one of the most common forms of chronic
widespread pain, with an estimated prevalence of 2% to 4% of
the adult population.14,30,71 Characterised by pain, physical
exhaustion, sleep disturbance, and cognitive symptoms, FM
leads to a significant impairment in quality of life of affected
individuals.30,52,71,79 The pathophysiology of FM is not well
understood, with multiple hypotheses being suggested including

impaired central nervous system nociceptive processing, altered
peripheral nociception, and systemic inflammation.79

The diagnosis of FM is based on the recognition of a typical
cluster of symptoms, while excluding other potential sources of
pain.30 The diagnostic criteria for FM rely on self-reported
symptoms.93 The lack of objective diagnostic criteria is a source
of frustration among patients and clinicians, and adds to the
possible reasons for inaccurate diagnoses. In 2 retrospective
cohorts of patients diagnosed with FM, the rate of false-positive
diagnoses was estimated at 66% to 73%.22,89 Even when
provided with the best available treatment, many patients
continue to suffer from significant symptoms.30

In recent years, evidence is mounting on the critical role of the
gut microbiota in a variety of pathologies, including, but not
limited to, metabolic, cardiovascular, oncologic, neurologic, and
psychiatric disorders.33,49 The scientific literature is rich in studies
on different aspects of the interactions between the host and the
microbiome; however, data on the possible role of the gut
microbiota in the pathophysiology of chronic pain outside of the
gastrointestinal tract is still scarce. Our increasing understanding
of the interactions between the gut microbiota and the central
nervous system, also known as the “gut–brain axis,” makes
reasonable the hypothesis that it may also affect pain processing
and perception.6,7,15,21,24,53 Recently, this hypothesis has been
supported by several animal studies, which have shown that gut
microbiota play an important role in the development of visceral
pain,48,64,65 of chemotherapy-induced neuropathic pain,76 and
of opioid tolerance.35 Human studies have thus far focused on
alterations of the gut microbiota in several visceral pain disorders,
showing consistent alterations in individuals with irritable bowel
syndrome (IBS)16,19,70,83,96 and in patients suffering from chronic
dysfunctional pelvic pain.5,9,77 Similarly, patients with chronic
fatigue syndrome (CFS), which shares some symptomatic
features with FM, were shown to have altered gut microbiome
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and metabolomic profiles.25,27,60,61 Finally, in several rheumato-
logic diseases, including rheumatoid arthritis and spondyloar-
thropathies, microbiome alterations have been
reported.32,92,94,95

Indirect evidence hints that the gut microbiome may be altered
in FM patients: altered small intestinal permeability was reported
in a cohort of FM and complex regional pain syndrome patients28;
in a small cross-sectional study of FM patients, a distinct urine
metabolomic signature was demonstrated, which could be
attributed to gut microbiome alterations.51

Despite recent reports of gut microbiome alterations in certain
inflammatory rheumatic diseases, IBS, and interstitial cystitis (IC),
there is still no evidence of such alterations in nonvisceral pain.
Here, variation in the composition of the gut microbiome between
FMpatients andcontrol participants is investigated for the first time.

2. Methods

2.1. Study design and oversight

The study took place at the Alan Edwards Pain Management Unit
of the McGill University Health Centre, Montreal, and at the West
Island Rheumatology Clinic, in Montreal, Quebec, Canada. The
study was approved by the McGill University Health Centre,
Montreal institutional review board. All participants were given
a detailed explanation of the study and signed an informed
consent form.

2.2. Patient recruitment and clinical evaluation

Individuals with FM and control participants were recruited as
follows: patients were recruited at the Alan Edwards Pain
Management Unit and at the West Island Rheumatology Clinic.
Patients were contacted either by their treating physician, or by
advertisements in the local media and a dedicated web site.
Inclusion criteria for patients were: female sex, age 30 to 60 years,
widespread pain index and symptom severity scores compatible
with the 2016 diagnostic criteria for FM, and ability to provide
informed consent in French or in English. Three groups of control
participants were recruited: (1) first-degree female relatives of
patients participating in the study were recruited as genetic
controls. Thisgroup includedadultwomen; (2) householdmembers
of patients participating in the study were recruited as environment
controls. This group includedwomen andmen aged 30 to 70 years;
and (3) unrelated healthy women aged 30 to 60 years.

Exclusioncriteriawere:major chronic illness (eg,malignancy, active
inflammatory disease, and metabolic disease), antibiotic treatment in
the preceding 2 months, any acute illness in the preceding month,
change in regularly taken medication in the preceding month, and
substantial dietary alterations in the preceding month.

All patients with chronic pain were interviewed by a specialized
pain physician for a thorough assessment. Only individuals whose
diagnosis of FMwas confirmed were deemed eligible to participate
in the study as patients. All patient and control participants were
interviewed by a specialized pain physician, and data were
collected regarding their demographics, anthropometrics, comor-
bidities (including a specific evaluation for IBS, based on ROME IV
criteria44,55), medications, dietary intake, smoking, and alcohol
consumption. Comorbidities were recorded based on a systematic
clinical interview by a pain medicine physician and a review of
participants’ regular medications. Participants then filled-in the
following questionnaires: the FM Survey Diagnostic Criteria and
Severity Scale questionnaire, assessing symptom severity, pain
location, fatigue, sleep quality, and cognitive and somatic

complaints in FM patients, based on the 2016 criteria for the
diagnosis of FM93; the FM Impact Questionnaire, a 10-item
questionnaire evaluating physical functioning, work difficulty, pain,
fatigue, morning tiredness, stiffness, anxiety, and depression11;
physical activity assessment using the Physical Activity self-
Administered Questionnaire, a 22-item questionnaire evaluating
the average individual physical activity level88; andSleep Scale from
the Medical Outcomes Study, a 12-item sleep quality evaluation
questionnaire.58 All questionnaires were offered in English or in
French and have been validated in both languages.13,23,68,88

Participants were then interviewed by a dietitian, who supervised
them as they filled-in the web-based NIH ASA24-Canada dietary
recall, validated in English and in French.86

2.3. Dietary intake assessment

Dietary intake was assessed using the NIH Automated Self-
Administered24-hour recall (ASA24-Canadaversion2016, English
or French). This tool has been extensively validated.66,86 During the
on-site visit, participants were trained and supervised by a dietitian
as they filled the first day of recall online. They were asked to fill 2
additional separate days during the following week, allowing for
a total of 3-day dietary assessment, including 2 weekdays and one
weekend day. Data sets with at least 2 complete dayswere kept (n
5 146) and daily nutrient averages were calculated. Nutrient
intakes were compared among groups as absolute intakes and
relative to energy or body weight. Underreporting was investigated
by applying a ratio of reported energy intake over resting energy
expenditure estimated with the Mifflin-St. Jeor equation56;
participants with a ratio below 0.9 were deemed as underreporters
and excluded from analysis. The Healthy Eating Index (HEI-2015)
was calculated to assess diet quality.39

2.4. Sample acquisition and handling

Patients were asked to collect a stool sample at home, using the
OmnigenGutOM-200 kit (DNAGenotek,Ottawa,Ontario, Canada).
Stool was fresh-frozen at220C, and delivered by the participants to
the study facility within 10 days of its collection. Proper delivery
conditions were assured using a dedicated thermal bag (Thermos,
Schaumburg, IL) containing an ice pack, and monitored using an
adhesive thermal indicator (Warm Mark; MesaLabs, Lakewood,
CO), which was attached to the sample bag. On arrival at the study
facility, thermal indicators were read to assure proper delivery
conditions, and the stool samples were frozen at280C.

2.5. DNA extraction, 16S ribosomal RNA gene amplification,
and Illumina sequencing

DNA was extracted from all 156 stool samples using the QIAamp
PowerFecal DNA kit (Qiagen, Venlo, the Netherlands) following
the manufacturer’s instructions. The V5-V6 region (based on
Escherichia coli) of the 16S ribosomal RNA (rRNA) was targeted
for amplification by PCR using the forward primer: S-D-Bact-
0785-a-S-18, GGMTTAGATACCCBDGTA and reverse primer:
S-*-Univ-1100-a-A-15, GGGTYKCGCTCGTTR.38 The CS1
(ACACTGACGACATGGTTCTACA) and CS2 (TACGGTAGCA-
GAGACTTGGTCT) tags were used to add a barcode and Illumina
adapters. Amplification was performed using Q5 High-Fidelity
DNA polymerase (New England BioLabs, Ipswich, MA) with PCR
cycles as follows: initial denaturation step of 98˚C, for 30 seconds,
before 23 cycles of 98˚C, for 10 seconds, 58˚C, for 15 seconds,
and 72˚C, for 30 seconds, with the final extension at 72˚C, for 2
minutes. The MiSeq250 platform was used for 23 250 nucleotides
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(nt) paired-end sequencing of the resulting PCR products. The
ANCHOR pipeline was used to process and annotate sequence
reads (https://github.com/gonzalezem/ANCHOR). Briefly, sequen-
ces were aligned and dereplicated using Mothur74 before selection
of operational taxonomic units (OTUs) using a count threshold of
48 across all samples. Annotation used 4 sequence repositories
with strict BLASTn criteria (.99% identity and coverage): NCBI-
curated bacterial and Archaea RefSeq, NCBI nr/nt, SILVA,
Ribosomal Database Project (NCBI-curated bacterial and
Archaea RefSeq is given a priority when at 100% identity and
coverage). When the highest identity/coverage is shared among
different putative annotation, all are retained and reported
(borrowed from the idea of secondary annotation in metatran-
scriptomics29). Amplicons with low counts (,48) are binned to
high-count sequences in a second BLASTn, using a lower
threshold of .98% identity/coverage.

2.6. Whole-genome sequencing, analysis usingMetaPhlAn2,
and mapping to 16S rRNA gene operational taxonomic units

Genomic DNA was quantified using the Quant-iT PicoGreen
dsDNA Assay Kit (Life Technologies, Carlsbad, CA). Libraries
were generated using the NEB Ultra II DNA kit (NEB) as per the
manufacturer’s recommendations. TruSeq adapters with unique
dual indices and PCR primers were purchased from IDT
(Integrated DNA Technologies, Inc, Coralville, IA). Size selection
of libraries at 360 nt was performed using SPRIselect beads
(Beckman Coulter, Brea, CA). Libraries were quantified using the
Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies) and the
Kapa Illumina GA with Revised Primers-SYBR Fast Universal kit
(Kapa Biosystems Inc., MA). Average size fragment was de-
termined using a LabChip GX (PerkinElmer, Waltham, MA)
instrument. The libraries were normalized, pooled, and denatured
in 0.05 N NaOH and then neutralized using HT1 buffer. ExAMP
was added to the mix to bring the final concentration to 200 pM
following the manufacturer’s instructions. A phiX library was used
as a control and mixed with libraries at 1% level. The pool was
loaded on an Illumina cBot, and the flowcell was ran on a HiSeq
4000 for 2 3 100 cycles (150 nt, paired-end mode). The Illumina
control software was HCS HD 3.4.0.38, and the real-time
analysis program was RTA v. 2.7.7. Program bcl2fastq2 v2.18
was then used to demultiplex samples and generate fastq reads.
Trimmomatic43 was used to trim nucleotides of poor quality and
reads ,100 nt were removed (parameters: LEADING:25 TRAIL-
ING:25 MINLEN:100). Whole-genome sequencing (WGS) reads
were analysed in 2 ways: by directly mapping them to the 16S
rRNA gene ANCHOR OTU sequences and using MetaPhlAn2.75

Bowtie241 was used to align WGS reads against MetaPhlAn2
v2.2.0 (default parameters). Mapping ofWGS reads directly to the
ANCHOR OTU table was performed using BLASTn (100%
identity and 100% query coverage thresholds).

2.7. Canonical correspondence analysis and prediction

Canonical correspondence analysis was performed on raw OTU
counts of FM patients and unrelated controls (PERMANOVA,
permutational multivariate analysis of variance P , 0.001).
Household and family controls were projected on the axes post
hoc (predict.cca function, R Vegan package62).

2.8. Microbiome explained variance analysis

Unconstrained ordination was calculated using Nonmetric
Multidimensional Scaling transformation on Bray–Curtis

distances (metaMDS function, R Vegan package). Environmental
factors were projected onto ordination diagram, and each
variable regression was independently tested by Monte Carlo
permutation test (envfit function, R Vegan package).62

2.9. DESeq2 differential abundance analysis

Differential abundance analysis was performed using 16S rRNA
in accordance with DESeq2,47,84 which has been shown to
performwell when applied to the uneven library sizes and sparsity
common in 16S rRNA gene marker data.91 Differentially
abundant (DA) selection parameter of false discovery rate (FDR;
Benjamini–Hochberg procedure) , 0.1 was applied4,46,47

(supplementary file, available at http://links.lww.com/PAIN/
A839). Regularized log transformation was applied to raw counts
across samples (rlog function, R phyloseq package54). A sparsity
and low-count cutoffs were used whereby an OTU count in
a single sample is ,90% of the count in all samples, and OTU
count must be .2 in 40% of the samples.

2.10. Correlation between taxa abundance and
clinical indices

Spearman’s correlation was calculated between log-transformed
OTU abundance and continuous or rank clinical variables.
Individual P value was calculated for comparison, and correction
for multiple comparisons was done using Benjamini–Hochberg
FDR, with a cutoff value of 0.05. A colour-coded correlation
matrix representing taxa abundance vs clinical indices was
elaborated and sorted based on hierarchical clustering of DA
OTUs using MathWorks MATLAB.

2.11. Operational taxonomic unit–operational taxonomic
unit correlation

Pearson’s correlation was calculated between normalized OTU
counts. Correlation matrices were sorted based on hierarchical
clustering of OTUs and represented using R package corrplot.90

2.12. Machine-learning instances for fibromyalgia prediction

The L1-penalized regression or LASSO (least absolute shrinkage
and selection operator)85 was used to predict FM diagnosis from
the ANCHOR DA OTU count table and was run using glmnet R
package.26 Several count tables were tested as preselection data
sets for the LASSO including full and reduced (sparsity filtered,
DESeq2 DA OTUs), each with different count transformation or
normalization strategies (raw, log, quantile, square root; supple-
mentary Figure 5, available at http://links.lww.com/PAIN/A839).
DESeq2 DA OTUs (72 features) performed better in diagnosis
prediction than sparsity-filtered counts (1071 features), and so
were considered a good preselection data set in linewith previous
research.98 Random OTU count table subsets of equivalent size
(each with ;72 OTUs) were also compared against the DESeq2
DA OTU subset, with DA OTUs again showing better prediction
power (supplementary Figure 3, available at http://links.lww.com/
PAIN/A839). Raw counts outperformed transformed data (log,
square root) and normalized counts (quantile) in their prediction
and were used for subsequent analysis. LASSO’s integrated
feature selection (ie, selection of sets of features leading to best
prediction) was run on DESeq2 DA count table (72 OTUs) using
a 10-fold multinomial cross-validation and repeated 10,000
times. A total of 123 high predictive DA OTU sets, ie, sets of
features selected multiple times by LASSO with a high prediction
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(median area under the curve [AUC] . 0.9) or selected a single
time with a perfect prediction (AUC of 100%), were selected for
leave-one-out cross-validation multinomial LASSO. Leave-one-
out cross-validation was performed on training data sets
composed of 90% of the participants and was repeated 1000
times. Prediction was evaluated on the remaining 10% of
participants (test data set). Receiver operating characteristic
(ROC) curves (pROC R package73) were used to illustrate the
discriminative ability of the classifier, whereas prediction perfor-
mance was evaluated by the AUC metric. The related support
vector machine (SVM) technique34 was used based on the best
predicting DA OTUs and 90% of the samples, and the diagnosis
prediction was evaluated (AUC on 10% on the total number of
participant).

2.13. Targeted serum metabolite analysis

Serum levels of butyric acid, isobutyric acid, andpropionic acidwere
measured as previously described.17 Targeted metabolite quanti-
fication approach was used to analyze the serum samples using
a combination of direct injection mass spectrometry with a reverse-
phase liquid chromatography-tandemmass spectrometry (LC-MS/
MS custom assay). The method used combines the derivatization
and extraction of analytes, and the selective mass-spectrometric
detection using multiple reaction monitoring pairs. Isotope-labeled
internal standards and other internal standards are used for
metabolite quantification. The custom assay contains a 96-deep-
well plate with a filter plate attached with sealing tape, and reagents
and solvents used to prepare the plate assay. First 14 wells were
used for one blank, 3 zero samples, 7 standards, and 3 quality
control samples. One hundred fifty microliter of ice-cold methanol
and 10 mL of isotope-labeled internal standard mixture were added
to 50mL of serum sample for overnight protein precipitation. Then it
was centrifuged at 313,000g for 20 minutes. Fifty microliter of
supernatant was loaded into the center of wells of a 96-deep-well
plate, followed by the addition of 3-nitrophenylhydrazine (NPH)
reagent. After incubation for 2 hours, BHT stabilizer and water were
added before LC-MS injection.

Mass spectrometric analysis was performed on an API4000
Qtrap tandem mass spectrometry instrument (Applied
Biosystems/MDS Analytical Technologies, Foster City, CA)
equipped with a solvent delivery system. Data analysis was
performed using Analyst 1.6.2.

2.14. General statistical considerations

Clinical indices, including demographics, anthropometrics, comor-
bidities, and medications, in the study groups were compared
using IBM SPSS Statistics version 23 and MathWorks MATLAB
version 2018b, using analysis of variance (ANOVA) for univariate
comparisons and multivariate analysis of variance for multivariate
comparisons. Metabolite concentrations were compared similarly.

Dietary analysis was performed as follows: normality of
distribution was explored using Kolmogorov–Smirnov and
Shapiro–Wilk tests. Most dietary data were assessed using
one-way ANOVA and post hoc Games-Howell test (no assump-
tion of equal variance and appropriate for unequal sample size).
Some nutrients were not normally distributed and analysed using
nonparametric Kruskal–Wallis test. Analyses were conducted
using IBM SPSS Statistics version 23.

Formal power analysis for sample-size calculation was not
performed, but sample size was not smaller than that of similar
previous studies of microbiome characterization in other medical
conditions.94

2.15. Data availability

All data generated as part of this study are included in this
published article and its supplementary file or are available from the
corresponding authors on reasonable request. Supplementary file
is available at https://github.com/gonzalezem/Fibromyalgia.
Genome sequences can be found at https://www.ncbi.nlm.
nih.gov/sra/PRJNA521398 (16S rRNA sequences) and https://
www.ncbi.nlm.nih.gov/sra/PRJNA521587 (WGS sequences).

3. Results

3.1. Participant characteristics

Two hundred potential participants were screened for this study.
Twenty-nine participants were excluded during the screening
phase and 15 participants, who did not meet the diagnostic
criteria for FM, were excluded following amedical interview with 2
specialized pain physicians. Of the 156 participants, 77 were FM
patients and 79 were control participants. Control participants
included 11 first-degree relatives of participating FM patients, 20
household members of participating patients, and 48 unrelated
controls. Other than sex, marital status, and occupational status,
differences in demographic and anthropometric characteristics
among groups were not statistically significant (supplementary
table 1, available at http://links.lww.com/PAIN/A839). One
patient in the first-degree relative control group was diagnosed
with well-controlled rheumatoid arthritis, with no evidence of
active arthritis or elevated inflammatory markers. All participants
were recruited and all samples collected between October 2017
and June 2018. No seasonal variation was observed between
groups when comparing sample collection season (ANOVA P 5
0.30, F 5 1.24).

Fibromyalgia patients were women (mean age 466 8 years),
who on average had been diagnosed with FM 12 (SD 7.7) years
earlier. The majority of participants were of Caucasian
ethnicity. Mean widespread pain index in the patients’ group
was 11 (SD 3.2), and their mean symptom severity score was
9.3 (SD 1.8). The 2016 FM diagnostic criteria scores and FM
Impact Questionnaire scores were significantly higher in
patients compared with all control groups (Pillai’s trace P ,
0.0001, F 5 4.53; supplementary table 2, available at http://
links.lww.com/PAIN/A839). Participants’ sleep quality was
evaluated using the Insomnia Severity Index questionnaire.
Fibromyalgia patients reported more difficulty falling asleep,
maintaining sleep, and early awakening (Pillai’s trace P ,
0.0001, F 5 7.75, see univariate analysis in supplementary
table 3, available at http://links.lww.com/PAIN/A839). The
frequency of depression and anxiety scores of 5/10 or higher
among FM patients was 59% and 68%, respectively, in line
with previous reports.2,31

Participants’ physical activity was evaluated using the Physical
Activity Self-administered Questionnaire. No consistent trend
towards higher or lower level of activity was observed for any
group (supplementary table 3, available at http://links.lww.com/
PAIN/A839).

Dietary assessment was performed for all participants. Among
participants with complete dietary reports, 16 patients and 3
unrelated controls were excluded for underreporting. Energy and
macronutrient intake (total and relative) were not different
between patients and controls (supplementary table 4, available
at http://links.lww.com/PAIN/A839). In addition, vitamin, mineral,
different fatty acids, alcohol, caffeine, sugar, and fiber intakes
were not different among groups, nor was overall diet quality
score (data not shown).
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3.2. Overall gut microbiome composition

To explore the composition of the gut microbiome of FM patients
and controls, we studied a cohort of 156 adults. Stool samples
(77 FM patients and 79 controls) were collected and sequenced
using both 16S rRNA and metagenome methods, and analyzed
at multiple taxonomic levels. 16S rRNA sequencing produced
12,137,453 reads, with an average of 77,804 6 6832 reads per
sample.

A total of 1620 OTUs were identified capturing 8,474,421
reads. These could be classified at various taxonomic levels: 8 at
class, 25 at order, 179 at family, 716 at genus, and 349 as
species, with 343 OTUs remaining as unclassified or unknown
(Fig. 1). Predominant phyla across all participants included
bacteroidetes (48% of total raw counts), firmicutes (40%),
proteobacteria (4%), and actinobacteria (2%). From the 349
OTUs annotated at species taxonomic level, 312 were unique
whereas 37 shared a sequence common to multiple species
(additional 16S andWGS data are provided in the supplementary
file). The 10most abundant OTUs annotated at species resolution
across all samples were from the Bacteroides genera, including
Bacteroides dorei, Bacteroides uniformis, Bacteroides stercoris,
Bacteroides ovatus, as well as Prevotella copri, Alistipes
putredinis, and Faecalibacterium prausnitzii.

To validate the taxa identified using 16S rRNA gene
amplification, WGS data were directly mapped to the 16S rRNA
gene OTU table as well as analysed using MetaPhlAn2. Whole-
genome sequencing generated 1,289,867,794 reads with an
average of 8,268,383 reads per sample. All 1620 OTUs were
successfully recapitulated by WGS reads at 100% identity. The
median coverage was 99.1% (SD 4.2) with 1015 OTUs mapped
uniquely and 605 sharing reads. Independent analysis using
MetaPhlAn2 identified 196 species, including all but 3 species
found using 16S rRNA gene amplification with the exception of
those not yet present in the MetaPhlAn2 marker database (80
species, Fig. 1H).

3.3. Gut microbiome composition is altered in
fibromyalgia patients

Shannon and inverse Simpson alpha-diversity indices showed
nonsignificant differences in sample diversity between FM
patients and household, relatives, and unrelated control groups
(ANOVA P . 0.05; Fig. 1F). Bray–Curtis dissimilarity between
pairs of participants showed a small but significant difference in
mean dissimilarity metrics among FM–FM pairs as compared to
FM–control pairs (P , 0.0001, F 5 48.44), or control–control
pairs (P , 0.0001, F 5 56.71, Fig. 1E).

Canonical correspondence analysis suggests that samples
segregate by FM patients and unrelated controls in nonoverlap-
ping clusters (Fig. 2A). Multivariate analysis showed between-
group variance to be significantly greater than within-group
variance (P, 0.01) between FM patients and unrelated controls.
Household members and first-degree relative controls clustered
between FM patients and unrelated controls (Fig. 2B).

Differential abundance analysis was performed to compare FM
patients (77) with unrelated control participants (48) using
DESeq2. Seventy-two OTUs were identified as significantly DA,
53 higher in FM and 18 higher in unrelated controls. These
included 47 that could be annotated at either genera or
species taxonomic levels and included taxa from firmicutes,
bacteroidetes, and proteobacteria. The largest positive fold-
change difference in DA putative species observed in FM
patients were from the OTUs Parabacteroides_merdae_4 and

Clostridium_scindens_1, whereas the largest negative fold-
change difference in FM patient were in Prevotella_copri_1 and
Bacteroides_uniformis_3 (Fig. 3).

When relative abundance ofOTUswere correlated, DA species
generally clustered according to their abundance in participant
groups, whereby species found in higher abundance in FM
patients clustered together, whereas those found in higher
abundance in controls clustered separately (supplementary
Figure 1A, available at http://links.lww.com/PAIN/A839). Among
DA species, the majority of correlations were statistically
significant (P , 0.1), showing positive correlations between
a majority of DA species within FM group and within unrelated
control group (Pearson correlation . 0) and significant inverse
correlations of DA species between FM and unrelated control
groups (Pearson correlation , 0, supplementary Figure 1B,
available at http://links.lww.com/PAIN/A839). This observation
serves as an independent support that DA taxa represent a valid
difference between FM patients and controls.

To control for possible confounding effects of host-related and
environmental variables, the amount of variance (r2) explained by
various possible confounders was evaluated using a general
linear model. The highest amounts of microbiome variance were
explained by the diagnosis of FM and disease-specific measures,
whereas all other covariates, including diet, medications,
comorbidities and anthropometric variables, had a smaller effect
on the observed variance (see supplementary Figure 2 Tables 5
and 6, available at http://links.lww.com/PAIN/A839). This sug-
gests that at least some of the observed differences in
microbiome composition are likely to be attributed to FM.

3.4. Altered serum levels of fermentation end products in
fibromyalgia patients

Consistent alterations in the abundance of butyrate metabolism–
related bacteriawere observed:F. prausnitzii andB. uniformiswere
found in lower relative abundance in FM patients, whereas higher
relative abundance was observed for Intestinimonas butyricipro-
ducens, Flavonifractor plautii, Butyricoccus desmolans, Eisenber-
giella tayi, and Eisenbergiella massiliensis. To explore the possible
metabolic effect of these alterations, a targeted metabolite
approach was used to measure the serum concentrations of
butyric acid, isobutyric acid, propionic acid, and lactic acid. Serum
levels of butyric acid in FMpatients (n5 73) were higher compared
to unrelated controls (n 5 46, P 5 0.005), whereas levels of
propionic acid were lower (P 5 0.006) and a trend towards lower
levels of isobutyric acid was also observed (P 5 0.056). No
significant differences in the serum levels of lactic acid were
observed (Fig. 4B). Multivariate analysis showed a significant
between-group difference (Pillai’s Trace, F 5 8.97, P , 0.0001).

3.5. Gut microbiome is associated with clinical indices
of fibromyalgia

To explore the relationship between DA taxa abundance and
symptom severity, the relative abundance of DA OTUs was
correlated against disease-specific and independent variables.
Spearman’s rank correlation coefficient demonstrated a statisti-
cally significant association between the abundance of several
taxa and disease severity measures, including pain intensity,
widespread pain index, dyscognition, and fatigue (Benjamini–
Hochberg FDR , 0.05, Fig. 4A). The abundance of these taxa
showed no consistent relationship with patients’ demographic,
anthropometric, or physical activity variables. Thus, abundance
of some DA taxa could be correlated with FM symptom severity.
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Figure 1.Overall microbiome composition of 156 study participants. (A) Flower diagram of 1620OTUs colour coded by phyla. An interactive version is available on
http://www.computationalgenomics.ca/pub/fibromyalgia_microbiome/flower_diagram/. (B) Phyla-level taxonomic composition of the gut microbiome among
FM patients (n5 77), relative controls (RC, n5 11), household members (HC, n5 20), and unrelated controls (UC, n5 48). (C) Distribution of OTUs by taxonomic
level of identification. (D) Distribution of relative abundance by the level of taxonomic identification. (E) Comparison of Bray–Curtis dissimilarity between all pairs of
156 participants, demonstrating that pairwise distances between FM patients (FM–FM, 1482 pairs) are smaller as compared to distances between pairs of
patients–controls (FM–C, 6083 pairs) or controls–controls (C–C, 1560). (F) Comparison of alpha diversity indices for each participant group. (G) Study design
flowchart. (H) Comparison of species identification using 16S rRNA genes (ANCHOR; yellow) andWGS (Metaphlan2; blue) technologies. FM, fibromyalgia; WGS,
whole-genome sequencing.
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3.6. Microbiome-based machine-learning identification of
fibromyalgia patients

To explore the utility of gut microbiome composition in identifying
FM patients, we used machine-learning using LASSO (least
absolute shrinkage and selection operator) and SVM algorithms
to define the OTUs most predictive of the diagnosis of FM (Fig.
5A). The full and sparsity-filtered count tables, as well as OTU
subsets (DA and random), were tested to determine the most
useful data set for classification. The DA OTU data set yielded the
highest diagnostic accuracy. A 10-fold cross-validation (10,000
iterations) yielded 123 DA OTU sets with the highest diagnostic
accuracy. LOOCV (leave-one-out cross-validation) identified
a set of OTUs that provided the best overall prediction accuracy
(AUC-ROC of 87.2%; Figs. 5B and C). Finally, this best
predicting OTU set was used in a SVM trained on 90% of
participants. The SVM yielded a prediction accuracy of ROC-

AUC 87.8% (Fig. 5D) using cohorts of 10% of participants (100
iterations).

The superior utility of the DA OTU data set reiterates the notion
that DA taxa represent a true difference between FM patients and
controls. Furthermore, these results suggest that the composition
of the microbiome could be indicative of the diagnosis of FM.

4. Discussion

The overall population structure and diversity of the gut micro-
biome in patients with FM and a matched cohort of healthy
controls was relatively similar. When explored at a higher
resolution, however, gut microbiome composition showed
significant alterations in FM patients. These differences, in-
dependently evident usingmultiple analytic approaches, revealed
a distinct pattern of the fecal microbiome in FM. The diagnosis of

Figure 2. (A) Canonical correlation analysis (x axis) vs principal component analysis (y axis) of taxa abundance (raw counts) in FM patients vs unrelated controls
(UC). Amount of explained variance is provided (P , 0.001, ANOVA). (B) Relatives (RC) and household controls (HC) cluster midway between FM patients and
unrelated controls. ANOVA, analysis of variance; FM, fibromyalgia.
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FM and its clinical features (pain, fatigue, and cognitive
symptoms) explained more microbiome variance than did any
other covariate, including demographic, anthropometric, and
dietary variables, as well as comorbidities and medication
consumption.

We observed a quantitative association between the abun-
dance of several taxa and the severity of FM-related symptoms,
including pain intensity, pain distribution, fatigue, sleep distur-
bances, and cognitive symptoms. The abundance of these taxa
correlated selectively with disease-related symptoms, but not
with disease-independent variables.

Having established that gut microbiome is altered in FM
patients, LASSO machine-learning algorithm showed high pre-
diction accuracy of patients from controls, based only on
individual microbiome features.67 Further study, including larger

cohorts, greater ethnic sampling, and cross-cohort assessment,
is required before a confident contribution can be made to
improved FM diagnostics; however, the ability of our model to
accurately identify FM patients in this study indicates that gut
microbiome may have the potential to contribute to the clinically
challenging diagnosis of FM.

When considering the 19 specific species identified as
significantly DA between FM patients and unrelated control
participants, there was a broad range in how well characterised
these species were. Those species putatively depleted (lower in
relative abundance) in FM were relatively well characterised and
included F. prausnitzii,B. uniformis,P. copri, andBlautia faecis. F.
prausnitzii is one of themost abundant and well-studied butyrate-
producing bacteria in the human gut.45 This species has been
reported to be depleted in multiple intestinal diseases and was

Figure 3. (A) Differentially abundant OTUs between the FM and unrelated control groups. Fold change (FC log2) denotes relative differences in relative abundance
between groups (DESeq2). Species are grouped by phylum per comparison. (B) A diagram of species-level differentially abundant bacteria in FM patients (left) and
in healthy controls (right). FM, fibromyalgia; OTU, operational taxonomic unit.
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therefore suggested as a potential marker for gut disorders.
Within the gut, F. prausnitzii has been reported to exert
antinociceptive as well as anti-inflammatory effects57,78 and to

enhance the intestinal barrier function.45 Similar to our observa-
tions, F. prausnitzii was also reported to be depleted in patients
with CFS.60

Figure 4. (A) Serum concentrations of butyric acid, isobutyric acid, propionic acid, and lactic acid (ANOVA **P, 0.01,_P, 0.1). (B) Abundance of some DAOTUs
is associated with clinical indices: Heat map of a univariate Spearman correlation matrix between DA taxa abundance (log2; x-axis) vs covariates (y-axis):
demographics and anthropometrics; disease severity metrics (FMDC: 2016 FM diagnostic criteria); quality of life scores (FIQ); physical activity measures (PA); and
sleep quality (sleep) scores. Heat map is sorted base on a hierarchical clustering of DA OTUs. Blue shades indicate positive correlations, whereas red shades
indicate negative correlations (20.5 , rho , 0.5). Statistically significant correlations are marked by a black dot (Benjamini–Hochberg FDR , 0.05). Note the
selective significant correlation of taxa abundance with symptom severity but not with other independent variables. ANOVA, analysis of variance; DA, differentially
abundant; FDR, false discovery rate; FIQ, FM Impact Questionnaire; FM, fibromyalgia; OTU, operational taxonomic unit.

November 2019·Volume 160·Number 11 www.painjournalonline.com 2597



B. uniformis is one of several species that have recently been
reported as having altered relative abundance in patients with
inflammatory arthritis, along with Haemophilus parainfluenzae, P.
copri, and others.95 B. uniformis and H. parainfluenzae were
detected in synovial tissues of osteoarthritic joints, whereas P.

copri and H. parainfluenzae were detected in rheumatoid arthritis
synovial fluid. P. copri is believed to mediate inflammatory
response through Th17 activation,36,42 and was also shown to
induce arthritis in an animal model of arthritis-pronemice.50 In this
study, these species were found in lower abundance in FM
patients. Although FM is often considered to be a rheumatologic
disease, it seems that at least some species previously found at

higher abundance in inflammatory rheumatic diseases are
depleted in FM.

In contrast to the depletion of butyrate producers F. prausnitzii
and B. uniformis in FM patients, we observed significant higher
relative abundance of a number of other known intestinal butyrate
producers: I. butyriciproducens, F. plautii, B. desmolans, E. tayi,
and the recently identified E. massiliensis.1,3,10,12,37,81,87 Alter-
ations in butyrate- and propionate-metabolizing species were
further supported by alterations in serum levels of these short-
chain fatty acids. Coherent with this putative shift in the butyrate-
producing community of FM patients, Parabacteroides merdae

was also significantly higher in relative abundance in FM patients.

Figure 5. Machine-learning classifier algorithm: (A) Two-step LASSO95 workflow adapted from Bollepalli et al.9 Operational taxonomic units that resulted in the
best prediction accuracy in LASSOwere used in a support vector machine (SVM). (B) Species-level annotated OTUsmost often selected by LASSO. (C) Receiver
operating characteristic curve for 1000 iterations of LASSO-LOOCV feature prioritisation using 123 previously selected OTU sets. (D) Receiver operating
characteristic curve for 100 iterations of SVM validation test usingmost important group of OTUs (group_103). Themodel was trained on 90% of the initial number
of samples and tested on the remaining. AUC, area under the curve; CV, cross-validation; LOOCV, leave-one-out cross-validation; OTU, operational taxonomic
unit; ROC, receiver operating characteristic.
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Recently, P. merdae has been reported by Olson et al. to be one
of 2 key mediators of the antiepileptic effect of the ketogenic
diet63: in a mouse model, ketogenic diet can drive an increase in
the abundance ofP.merdae, which in turn, by regulation of amino
acid g-glutamylation, leads to an increase in hippocampal
g-aminobutyric acid (GABA)/glutamate ratio. The increase in the
inhibitory to excitatory neurotransmitter ratio in the brain is
believed to protect against seizures. The second key mediator
species of the ketogenic diet effect on seizures reported by Olson
et al. was Akkermansia muciniphila, which in our cohort was also
found at higher abundance in FM patients, although this
observation did not reach statistical significance (P 5 0.042,
Benjamini–Hochberg FDR 5 0.27).

Clostridium scindens and B. desmolans, 2 bacterial species
capable of converting cortisol to androgens by 20a-hydroxyste-
roid dehydrogenase activity,8,18,59,72,80 were found in higher
abundance in FM patients. Interestingly, abnormal regulation of
hypothalamic-pituitary-adrenal axis has been reported in FM
patients, although the direction of dysregulation is
controversial.20,79

Fibromyalgia shares clinical features with several syndromes,
including IBS, CFS, and IC. Specific alterations in gut microbiota
were reported in all these syndromes (IBS,69,70,82,97 CFS,60 and
IC9). Although several taxa, found here to be DA in FM, were also
reported to be DA in other overlapping syndromes, other taxa
seem to be unique to FM. As an example,C. scindenswas found
at higher abundance both in FM and in CFS. H. parainfluenzae
and F. prausnitziiwere found at decreased abundance in FM and
in CFS, and the latter was also reported to be depleted in IC
patients.9 Several genera, including Bacteroides, Parabacter-
oides, and Clostridium were found DA both in IBS and in FM
(independent of IBS).70,82,97 Nevertheless, a few taxa showed an
inverse differential abundance pattern: eg, P. merdae, signifi-
cantly higher in FM, was reported to be depleted in CFS.60

Furthermore, FM is associated with a high frequency of mental
health comorbidity, mainly anxiety and depression affecting 40%
to 80% of individuals.2,31 Anxiety, depression, and emotional
stress have been associated with alterations in gut microbiome
both in the general population40 and in the context of specific
other diagnoses. Recent research by Peter et al. (2018) has
revealed the potential importance of mental health as a factor in
IBS, suggesting that further cross-disciplinary research is needed
to fully understand themicrobiome differences identified here.69 It
thus seems that FM shares some microbiome characteristics
with several overlapping syndromes, while retaining some unique
features.

In this study, effort was made to validate the diagnosis of each
patient by a thorough medical evaluation by experienced pain
specialists, thus excluding over 15% of interviewed patients. We
consider the meticulous characterization of patient phenotypes,
an important strength of this study. A full dietary intake evaluation
was completed for nearly 80% of participants and analyzed by
a team of nutritionists. To the best of our knowledge, this type of
in-depth evaluation is not routinely performed in similar studies.
Finally, each participant underwent a full medical, including
documentation of their comorbidities (with a specific evaluation
for IBS), medication consumption, physical activity, and sleep.
These measures resulted in a well-balanced case-control cohort,
almost identical in demographics, anthropometrics, comorbid-
ities, nonpain medication intake, and dietary intake. Furthermore,
the extent of collected data allowed us to evaluate the effect of
each variable on the observed variance in microbiome compo-
sition and to detect potential confounding factors. The cohort of
156 participants provided sound statistical power. We have used

2 sequencing methods—16S rRNA gene amplification and WGS
metagenomics analyses—each with its own advantages and
drawbacks, to allow for an independent validation of the
microbiome composition. The combination of large cohort size
with high depth of coverage allowed for the identification of low-
prevalence DA species, such as I. butyriciproducens. Targeted
serum metabolomics allowed for an independent support of
some of the alterations observed in the gut microbiome. Results
of this study should be considered in light of several limitations:
first, the symptoms of FM include chronic pain, fatigue, and other
somatic symptoms, precluding the attribution of specific micro-
biome alteration to a specific clinical presentation. Second, over
90% of participants self-reported as Caucasians, possibly not
reflecting microbiome patterns in other ethnic groups. Third,
participants’ diagnoses were recorded based on a systematic
clinical interview, which could potentially lead to underdiagnosis.
Mental health conditions may be underrepresented in FM
patients (supplementary Table 5, available at http://links.lww.
com/PAIN/A839) as compared to self-reported symptoms
(supplementary Table 2, participants were not evaluated by
a mental health care specialist, available at http://links.lww.com/
PAIN/A839). Finally, this study was designed to find an
association between microbiome composition and FM, not
allowing for direct conclusions regarding causality or mecha-
nisms of action to be drawn.

The results reported here are, to the best of our knowledge, the
first to demonstrate gastrointestinal tract microbiota alteration in
patients with somatic (nonvisceral) pain in general, and FM in
particular. Some of the DA taxa reported here are known to be
involved in metabolic pathways whose effect on symptoms of FM
is biologically plausible. Moreover, there seems to be a quantita-
tive correlation between the abundance of several taxa and
symptom severity. Finally, DA taxa in FM patients share some
commonalities with overlapping dysfunctional syndromes—IBS,
CFS, IC—while retaining some unique DA taxa.

Results of this study provide evidence for alterations of gut
microbiome alterations in FM. Further studies are needed to
measure possible microbiome changes in other chronic pain
conditions, and to explore potential causal correlations between
the gut microbiome and FM. Our findings may offer important
opportunities to improve our understanding of FM, aid in its
diagnosis, and perhaps outline future therapeutic modalities.
First, exploring the mechanisms by which the gut microbiota may
affect nociception could offer new insights into the pathogenesis
and pathophysiology of FM, and possibly suggest leads to
explore the possible effects of trigger events, personal suscep-
tibility, and individual prognosis. Second, the accuracy of
microbiome-based machine learning classification suggests that
the microbiome holds the potential to aid in the diagnosis of FM in
the future. Finally, if a causal relationship between gut micro-
biome alterations and FM is established, the way may be paved
for the development of new treatment modalities targeting this
fascinating community of intestinal microorganisms.
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[37] Kläring K, Hanske L, Bui N, Charrier C, Blaut M, Haller D, Plugge CM,
Clavel T. Intestinimonas butyriciproducens gen. nov., sp. nov.,
a butyrate-producing bacterium from the mouse intestine. Int J Syst
Evol Microbiol 2013;63:4606–12.

[38] Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M,
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